skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tourrilhes, Jean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 28, 2026
  2. null (Ed.)
    Measuring the Available Bandwidth (ABW) is an important function for traffic engineering, and in software-defined metro and wide-area network (SD-WAN) applications. Because network speeds are increasing, it is timely to re-visit the effectiveness of ABW measurement again. A significant challenge arises because of Interrupt Coalescence (IC), that network interface drivers use to mitigate the overhead when processing packets at high speed, but introduce packet batching. IC distorts receiver timing and decreases the ABW estimation. This effect is further exacerbated with software-based forwarding platforms that exploit network function virtualization (NFV) and the lower-cost and flexibility that NFV offers, and with the increased use of poll-mode packet processing popularized by the Data Plane Development Kit (DPDK) library. We examine the effectiveness of the ABW estimation with the popular probe rate models (PRM) such as PathChirp and PathCos++, and show that there is a need to improve upon them. We propose a modular packet batching mitigation that can be adopted to improve both the increasing PRM models like PathChirp and decreasing models like PathCos++. Our mitigation techniques improve the accuracy of ABW estimation substantially when packet batching occurs either at the receiver due to IC, DPDK based processing or intermediate NFV-based forwarding nodes. We also show that our technique helps improve estimation significantly in the presence of cross-traffic. 
    more » « less
  3. null (Ed.)